get_signals.Rd
This function analyzes surveillance data to detect signals using the specified method.
get_signals(
data,
method = "farrington",
intervention_date = NULL,
stratification = NULL,
date_start = NULL,
date_end = NULL,
date_var = "date_report",
number_of_weeks = 6
)
A data frame containing the surveillance data preprocessed with [preprocess_data()].
A character string specifying the signal detection method to use. Available options include: `"farrington"`, `"ears"`, `"cusum"`, `"glm mean"`, `"glm timetrend"`, `"glm harmonic"`, `"glm harmonic with timetrend"`, `"glm farrington"`, `"glm farrington with timetrend"`. You can retrieve the full list using [available_algorithms()].
A date object or character of format yyyy-mm-dd specifying the date for the intervention in the pandemic correction models. After this date a new intercept and possibly time_trend is fitted.
A character vector specifying the columns to stratify the analysis. Default is NULL.
A date object or character of format yyyy-mm-dd specifying the start date to filter the data by. Default is NULL.
A date object or character of format yyyy-mm-dd specifying the end date to filter the data by. Default is NULL.
a character specifying the date variable name used for the aggregation. Default is "date_report".
integer, specifying number of weeks to generate signals for.
A tibble containing the results of the signal detection analysis.
[available_algorithms()]
if (FALSE) {
results <- input_example %>%
preprocess_data() %>%
get_signals(
method = "farrington",
stratification = c("county", "sex")
)
}