Automated and Early Detection of Disease Outbreaks
get_signals_aeddo.Rd
This function retrieves outbreak signals using the aeddo algorithm. It processes surveillance data, aggregates it based on specified date variables, and applies the aeddo algorithm to detect potential outbreaks.
Arguments
- data_aggregated
data.frame, aggregated data with case counts
- number_of_weeks
integer, specifying the number of weeks to generate signals for
- population_size
The population size for the aeddo algorithm. Default is 1.
- sig_level
The quantile from the random effects distribution used for defining the for outbreak detection threshold, a numeric value between 0 and 1.
- exclude_past_outbreaks
logical value indicating whether past outbreak related observations should be excluded from future parameter estimation.
- k
An integer specifying the rolling window size employed for parameter estimation.
- init_theta
Initial values for model parameters in optimization.
- lower
Lower bounds for optimization parameters.
- upper
Upper bounds for optimization parameters.
- method
The optimization method to use, either "BFGS" (default) or "L-BFGS-B".
See also
aeddo
for details on the aeddo algorithm.
Examples
if (FALSE) { # \dontrun{
data_aggregated <- input_example %>%
preprocess_data() %>%
aggregate_data() %>%
add_rows_missing_dates()
results <- get_signals_aeddo(data_aggregated)
} # }