Get Signals Stratified
get_signals_stratified.Rd
This function stratifies and aggregates surveillance data by specified columns and analyzes each stratum separately using the specified method.
Usage
get_signals_stratified(
data,
fun,
model = "",
intervention_date = NULL,
time_trend = FALSE,
stratification_columns,
date_start = NULL,
date_end = NULL,
date_var = "date_report",
number_of_weeks = 6
)
Arguments
- data
A data frame containing the surveillance data.
- fun
The signal detection function to apply to each stratum.
- model
character, default empty string which is the choice if farrington, ears or cusum are used and if a glm method was chosen as outbreak detection method then one of c("mean","sincos", "FN")
- intervention_date
A date object or character of format yyyy-mm-dd specifying the date for the intervention in the pandemic correction models. After this date a new intercept and possibly time_trend is fitted.
- time_trend
boolean default TRUE setting time_trend in the get_signals_glm(). This parameter is only used when an the glm based outbreak detection models are used, i.e. for the models c("mean","sincos", "FN")
- stratification_columns
A character vector specifying the columns to stratify the data by.
- date_start
A date object or character of format yyyy-mm-dd specifying the start date to filter the data by. Default is NULL.
- date_end
A date object or character of format yyyy-mm-dd specifying the end date to filter the data by. Default is NULL.
- date_var
a character specifying the date variable name used for the aggregation. Default is "date_report".
- number_of_weeks
integer, specifying number of weeks to generate signals for.